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Abstract. The Symmetric Rectilinear Steiner Arborescence (SRStA) problem is defined as follows:
given a set of terminals in the positive quadrant of the plane, connect them using horizontal and
vertical lines such that each terminal can be reached from the origin via a y-monotone path and the
total length of all the line segments is the minimum possible. Finding an SRStA has applications
in VLSI design, in data structures used in some optimization algorithms and in dynamic server
problems. In this paper, we provide a polynomial time approximation scheme for the SRStA problem,
improving the previous best approximation ratio of 3 for this problem.
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1. Introduction

In spite of large progress in the recent years, there is a number of gaps in our
knowledge about the exact complexities of some Steiner problems in rectilinear
metric. We propose to investigate one of these problems.

The problem of finding the Symmetric Rectilinear Steiner Arborescence (SR-
StA) problem can be stated as follows. We are given a set of n terminals in the
positive quadrant of the plane. A path connecting two terminals is y-monotone [6]
if it traverses a number of line segments, where each line segment is either vertical
or horizontal, and during the traversal the y coordinate of the successive points
are never decreasing. A feasible solution to the problem is a set of horizontal
and/or vertical segments connecting all the n terminals to the origin o in which each
terminal can be reached from o by a y-monotone path. Our goal is to find a feasible
solution in which the sum of lengths of all the segments is the minimum possible. If
instead we require the path connecting o to any point to be both x-monotone and y-
monotone, then the problem is referred to as the Rectilinear Steiner Arborescence
(RStA) problem (see Figure 1).
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Figure 1. Rectilinear Steiner Arborescence (RStA) and Symmetric Rectilinear Steiner Arbor-
escence (SRStA)

The history of the RStA problem is somewhat unusual, because after an exact al-
gorithm was published by Trubin [12], Rao et al. [10] showed that this solution was
in fact incorrect. Their paper describes a simple algorithm that offers approximate
solutions within a factor of 2 of the optimum. The most recent results on RStA
problem are the proof of NP-completeness of Shi and Su [11] and a polynomial
time approximation scheme by Lu and Ruan [4].

For the SRStA, the best previously known approximation was given by Charikar
et al. [2] which finds an approximate solution within factor 3 of the optimum.

In this paper, we provide a polynomial time approximation scheme (PTAS) for
the SRStA problem. A PTAS for a problem of size n is an algorithm that, for every
constant ε > 0, finds an approximate solution with an approximation factor of 1+ε
in time polynomial in n. We apply the method proposed in [3,7–9]. For the sake of
completeness, we briefly review the results of m-guillotine in Section 3.

1.1. MOTIVATIONS AND APPLICATIONS

The SRStA and the RStA problems have a number of applications. An application
that is mentioned quite often comes from VLSI design, where a RStA or SRStA
is needed to minimize the maximum delay of the signal sent from the origin o to
all the given terminals. A motivation for the on-line versions of these problems
come from data structures used in some optimization algorithms where an object
is optimized using successive iterations [1]. The SRStA problem has direct applic-
ation in the offline dynamic server problem on the line [2]. On-line arborescence
problems model real-life processes that have two dimensions. Below we briefly
sketch two applications of these problems.

Offline dynamic server problem on the line: We need to maintain a dynamic
collection of servers on a line L. The goal is to efficiently process a sequence of
requests, arriving at integer times t ∈ {1, 2, 3, . . . }, which are points on L, where
a server serves a request by moving to that point incurring a cost equal to the
distance traveled. It is possible to create and/or destroy servers without incurring
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any cost in the following manner: clone a copy of a current server at a point and
merge two servers present at the same point on L into one. After all the requests
at a particular instant of time t has been served, the algorithm is also charged an
additional rental cost equal to the number of servers currently present. The final
goal of this problem is to serve a sequence of requests such that the total cost
incurred is the minimum possible. The motivation for this problem comes from
the video-on-demand application of Papadimitriou et al. [5]. Theorem 4.4 in [2]
essentially show that an approximation algorithm for the SRStA problem with
an approximation ratio of r provides an approximation algorithm for the offline
dynamic server problem on the line with an approximation ratio of 2r.

Real-life processes in two dimensions: As discussed by Berman and Coulston [1],
as well as by Charikar et al. [2], on-line arborescence problems model real-life
processes that have two dimensions: dimension x refers to location on a delivery
route, DNA sequence etc., while dimension y refers to time. We can maintain
supplies of a resource (like cache of videos or a saved precomputed instance of
dynamic programming) on various places in x dimension, and then we receive
at various times request for delivering the resource. There are costs associated
with the storage of the resource, and with the distance traversed during a delivery.
Dependent whether the movement can occur in one or two directions, we obtain an
online RStA or SRStA.

2. Preliminary

Unless otherwise stated, all terminals lie in the positive quadrant of the plane.
Given a set N of terminals, the Hanan grid H(N) is the grid obtained by con-
structing horizontal and vertical lines through each point in N . Furthermore, it
is bounded by x-axis, y-axis, the horizontal line through the highest point and
the vertical line through the rightmost point. Let IH(N) denote the set of intersec-
tions in H(N). These intersections are called Hanan grid points. It is obvious that
N ⊆ IH(N).

Figure 2. two operations: (a) flipping and (b) shifting.

Two operations are defined for RStA or SRStA (Figure 2): flipping and shifting.
Flipping a corner p between two points a and b adjacent to p (Figure 2(a)) moves
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pb to ap
′

and moves pa to bp
′
. Shifting a line segment ab moves ab along either

axis direction until it is incident to a certain specified point (Figure 2(b)).

THEOREM 1 There exists an optimal SRStA R∗ such that every Steiner point in
R∗ belongs to IH(N).

Proof. Suppose that R is any optimal SRStA with at least one Steiner point not
belonging to IH(N). Let S denote the set of Steiner points not in IH(N). We will
modify R recursively until all Steiner points in S are moved to Hanan grid points.
Choose p ∈ S such that D(o, p) ≥ D(o, s) for ∀s ∈ S, where D(o, t) denote
the path length from the origin o to point t in R. For an internal point pi of an
SRStA, the in-edge of pi is defined as the edge pppi where pp is pi’s unique
parent. The out-edge of pi is defined as the edge pipc where pc is one of pi’s
children. Note that the root of SRStA o can only have out-edges and the leaves of
SRStA can only have in-edges. The in-degree of a point is defined as the number
of in-edges incident to it, which is always one; the out-degree of a point is defined
as the number of out-edges incident to it. Note that each Steiner point of SRStA
has either degree three (one in-edge and two out-edges) or degree four (one in-edge
and three out-edges). We prove the theorem by showing that R can be converted
into another optimal SRStA R

′
such that all points of R

′
are in IH(N). Figures 3, 4,

5 explain all possible cases of out-edges at p. Note that in these figures, we use a
directed edge from a to b to show that a is the parent of b.

Figure 3. Proof of Theorem 1. Case 1: (a) neither of the out edges is a corner line; (b) either
or both out-edges are corner lines (left to right or bottom to top); (c) only one out-edge is a
corner line (right to left).

Case 1: One out-edge points from left to right and one out-edge points from
bottom to top (see Figure 3). As shown in Figure 3(b) it is impossible for p to have
corner line pc or pd where ac points from left to right and bd points from bottom
to top. Otherwise, by flipping the corner a or b, an SRStA with less total length can
be obtained contradicting that R is optimal. However, p may have a corner line pc
as shown in Figure 3(c). By flipping the corner a, it becomes case 3 which will be
discussed later. If neither of the out-edges is a corner line (Figure 3(a)), then the
endpoints a and b must be either terminals or Steiner points in IH(N) according to
our criteria of choosing p. If this is true, then p must be in IH(N), a contradiction.
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Figure 4. Proof of Theorem 1. Case 2: (a) neither of the out edges is a corner line; (b) either
or both out-edges are corner lines (right to left or bottom to up); (c) only one out-edge is a
corner line (left to right).

Case 2: One out-edge points from right to left and one out-edge points from
bottom to top (see Figure 4). As shown in Figure 4(b) it is impossible for p to have
corner line pc or pd where ac points from bottom to top and bd points from right
to left. Otherwise, by flipping the corner a or b, an SRStA with less total length
can be obtained contradicting that R is optimal. However, p may have a corner line
pd as shown in Figure 3(c). By flipping the corner b, it becomes case 3 which will
be discussed later. If neither of the out-edges is a corner line (Figure 3(a)), then the
endpoints a and b must be either terminals or Steiner points in IH(N) according to
our criteria of choosing p. If this is true, then p must be in IH(N), a contradiction.

Figure 5. Proof of Theorem 1. Case 3: (a) neither of the out-edges is a corner line; (b) both
out-edges are corner lines; (c) only one out-edge is a corner line; (d) move the line segment
crossing p to left or right to make p lie in a Hanan grid point.

Case 3: One out-edge points from left to right and one out-edge points from
right to left (see Figure 5). As shown in Figure 5(b), it is impossible for p to have
two corner lines pc and pd. Otherwise, by flipping the corners a and b, an SRStA
with less total length can be obtained contradicting that R is optimal. However,
one of the out-edges of p may be a corner line (Figure 5(c)). Furthermore, we can
assume that the in-edge of p is not a corner line. Otherwise, we can also get an
SRStA with less total length by flipping the corner, contradicting to the optimality
of R. In Figure 5(a)–(d), both a and b are in IH(N) according to our criteria of
choosing p.

Let l be the vertical line through p. It is obvious that R overlaps with l in a set
of closed intervals. The interval containing p is picked and let
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S = {s0 = p, s1, s2, . . . , st } (t ≥ 1) be the set of points of R contained in the
interval and ys0 > ys1 > ys2 > · · · > yst where ysi is the y-coordinate of si for
i = 0, 1, 2, . . . , t . Note that st may be a corner. No si is in IH(N) since p is not
in IH(N). Furthermore, let H� = {h�

1 , h
�
2 , . . . , h

�
m} denote the set of horizontal

segments in R incident on the points in S and are to the left of l. Similarly, let
H = {h

1 , h

2 , · · · , h

n } be the set of horizontal segments in R incident on the
points in S and are to the right side of l. It is easy to show that m = n and each
horizontal segment in H� or H is on the Hanan grid by the optimality of R.

Let v� (v) be the closest vertical line in H(N) on the left (right) of l (shown
as dotted lines in Figure 5(d)). Therefore, all segments in H� (H) must intersect
v� (v). Moreover, shifting the segment s0st left or right between v� and v will
not change the total length of the resulting SRStA since m = n. Assume, without
loss of generality, that s0st is shifted to v� and the overlapped Steiner points are
removed, then each si , i = 0, 1, . . . , t , will be either in IH(N) or removed. Thus, a
new optimal SRStA can be constructed using at least one fewer Steiner point not
in IH(N).

Now the new SRStA has at least one fewer Steiner point not in IH(N) and its
cost is the same as that of the original SRStA. Continue this procedure until all
points not in IH(N) are considered. We will get an optimal SRStA R′ such that all
Steiner points in R′ are Hanan grid points. �

3. m-Guillotine Subdivision

Du et al. [3] studied rectangular subdivisions and introduced the concept of ‘guil-
lotine’ subdivision and claimed that any rectangular subdivision with cost L can be
converted into a guillotine rectangular subdivision with cost at most 2L by adding
a set of new edges whose total length is at most L. Moreover, the cost of the new
edges is charged off to the original edge set of the subdivision. Mitchell [?] exten-
ded these concepts and ideas by defining m-guillotine subdivision and proving that
an m-guillotine subdivision with cost at most (1 + 1

m
) · L can be obtained from a

rectilinear subdivision whose cost is L. With m-guillotine subdivision, Mitchell
[8, 9] found PTASs for various geometric optimization problems: TSP, Steiner
Minimum Tree and k-MST, etc.

We will use m-guillotine subdivision to design a PTAS for SRStA problem. For
simplicity and convenience, we will use similar notations as those in [8, 9].

Let R be a bounded rectilinear polygon with rectilinear holes: non-overlapping
rectilinear polygons, rectilinear trees and points. A rectilinear polygonal subdi-
vision R of R is defined as a finite set of non-crossing horizontal and vertical
segments that lie inside R. Without loss of generality, we assume that a rectilinear
polygonal subdivision R is restricted to the unit square, B. Let E denote the set of
edge segments of R and V denote the set of vertices of R. A window is defined
as an axis-aligned and bounded rectangle W and W ⊆ B. A line (horizontal or
vertical) l is a cut of E if l ∩ int (W) �= Ø. Let ξ be the number of intersections
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of a cut line l with E ∩ int (W). The intersections are denoted by p1, p2, . . . , pξ
along l. For a cut l, the m-span σm(l) of l is defined as: if ξ ≤ 2(m − 1), then
σm(l) = Ø; Otherwise, σm(l) is the line segment pmpξ−m+1, where m is a positive
integer. If σm(l) ⊆ E, the cut l is an m-perfect cut with respect to W . A rectilinear
polygonal subdivision R is an m-guillotine subdivision with respect to W if either
E ∩ int (W) = Ø or R is an m-guillotine subdivision with respect to windows
W ∩ P+ and W ∩ P−, where P+ and P− are the closed half-planes induced by a
perfect cut l. R is an m-guillotine if it is an m-guillotine with respect to B. A point
p on a cut l is m-dark with respect to l and W if there are at least m intersections
with E on each side of p along l⊥ ∩ int (W), where l⊥ is perpendicular to l and
passes through p. A cut l is favorable if the total length of the m-dark portion of l
is at least as that of σm(l). An optimal m-guillotine rectilinear subdivision can be
found by dynamic programming in polynomial time.

In [8], Mitchell provided the following lemma and theorem which assert the
existence of favorable cut lines and (1 + 1

m
) factor m-guillotine subdivision re-

spectively. For completeness, we give the proof here.

LEMMA 1 There exists a favorable cut for any rectilinear polygonal subdivision
R and window W .

Proof. As we assumed before, B is a unit square. Let f (x) (g(y)) be the length
of the m-span of the vertical(horizontal) line through x (y) where x, y ∈ [0, 1].
Sets Rx and Ry contain all points of B which are m-dark with respect to horizontal

and vertical cuts, respectively. Ax = ∫ 1
0 f (x)dx (Ay = ∫ 1

0 g(y)dy) is the area of
Rx (Ry). Without loss of generality, assume Ax ≥ Ay . Note that the area of the
region Rx can also be calculated as Ax = ∫ 1

0 h(y)dy, where h(y) is the length of

the intersection of Rx with a horizontal line through y. Therefore,
∫ 1

0 h(y)dy ≤
∫ 1

0 g(y)dy > 0. Thus, it is impossible that for all y ∈ [0, 1], h(y) < g(y). So there
must exist a y

′ ∈ [0, 1] such that h(y
′
) ≥ g(y′). The horizontal line through y

′
is a

favorable cut. �
Based on this lemma, Mitchell [8] further proved the following theorem.

THEOREM 2 Given any m > 0, for a rectilinear subdivision R with edge set E
of length L, there exists an m-guillotine rectilinear subdivision RG with edge set
EG of length LG. Furthermore, E ⊆ EG and LG ≤ (1 + 1

m
)L.

Proof. R will be recursively converted into an m-guillotine subdivision RG by
adding a set of horizontal/vertical edges E′. The total length of E′ is at most 1

m
L. If

there exists a perfect cut l, then we can choose it and recursively proceed on each
side of l. Otherwise, we choose a favorable cut line l. We assume, without loss
of generality, that l is horizontal. For an open m-dark subsegment ab of l, we can
charge off 1

2m of the length of ab to each of the first m subsegments lying above ab
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and to each of the first m subsegments lying below ab. The m-span of l is added
to the new edge set and l becomes the boundary of new child windows. Thus, no
partion of E will be charged more than once from each side. Since the total length
of all m-spans of all favorable cuts is at most 1

m
L, the total length of the new edge

set is at most 1
m
L. �

4. Main Result

THEOREM 3 There is an approximation algorithm for the SRStA problem that
runs in O(n10m+5) time and produces a solution with an approximation ratio of at
most 1 + 1

m
for any fixed positive integer m.

Proof. We assume, without loss of generality, that no two points of the input set N
of n points lie on a common horizontal line or a vertical line. Otherwise, the points
in N can be slightly perturbed. Let R∗ be an optimal SRStA with edge set ER∗ of
total length LR∗ . The proof of the theorem consists of two steps.

Step 1. R∗ is transformed into an m-guillotine rectilinear subdivision R which is
also a feasible SRStA. In other words, R is a rectilinear Steiner arborescence
which is y-monotone. We call R an m-guillotine SRStA. The cost of R is at
most

(
1 + 1

m

) · LR∗ . Denote the edge set of R by ER whose cost is LR.

Step 2. Due to the recursive structure of m-guillotine rectilinear subdivision, we
can apply dynamic programming to find the optimal m-guillotine SRStA.

Step 1 proves the existence of the m-guillotine SRStA while Step 2 finds the
optimalm-guillotine SRStA. The following two subsections demonstrate these two
steps in detail. The running time of dynamic programming isO(n10m+5) and LR ≤
(1 + 1

m
)LR∗ . �

4.1. THE EXISTENCE OF THE m-GUILLOTINE SRSTA WITH COST AT MOST(
1 + 1

m

) · lr∗
It is obvious that R∗ is a bounded rectilinear polygon with rectilinear holes. From
the proof of Theorem 2, m-spans of cut lines can be added to the edge set E∗
to make R∗ m-guillotine. However, when we add these line segments to E∗, we
must modify the current rectilinear polygonal subdivision to make it feasible. That
is, when we add a line segment (an m-span of some cut line), we must force the
result graph to be a y-monotone rectilinear Steiner arborescence. An m-guillotine
subdivision which is also an SRStA is referred to as an m-guillotine SRStA.

LEMMA 2 Let R be an SRStA with cost LR and S be an m-span (vertical or
horizontal) with length s of a cut line l of R. Then, R can be modified to another
feasible SRStA R′ such that R′ contains S and the cost of R′ is at most LR + s.
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Proof. We will consider the following two cases.

Case 1. S is horizontal (Figure 4.1(a)). Assume S crosses R at p1, p2, . . . , pt , with
increasing x-coordinates, and p1, pt are the two end points of S. If t = 1, we are
done. Now assume t > 1. For each pi , i = 1, 2, . . . , t , if pi is not a terminal, add
pi to R as a Steiner point whose degree is at least 3. Pick pc, the first point whose
in-edge is not inside σm(l), as the crucial point. If σm(l) �= Ø, then such a point
must exist. Otherwise, R is not connected or there exists at least one path which is
not y-monotone in R from the origin o to some point among p1, p2, . . . , pt . For
each i, i �= c, delete the in-edge of pi if the in-edge is not inside σm(l). Now each
nonterminal pi has degree at most 3. For all i > c, the in-edge of pi is pi−1pi . For
all i < c, the in-edge of pi is pi+1pi .

Case 2. S is vertical (Figure 4.1(b)). The argument is similar to that of case 1 except
that we pick p1 as the crucial point. For each i > 1, we delete the in-edge of pi if
the in-edge is not inside σm(l) and pick pi−1pi as its in-edge.

In both modifications, only line segment S is added toR. Note that the modification
can introduce nonterminal point whose degree is 1 or 2. Thus we need to prune the
graph by deleting this kind of edges and remove nonterminal point with degree 2
to make all Steiner points in the result SRStA have degree at least 3. The resulting
feasible SRStA has cost at most LR + s. �

Figure 6. A line segment with length s is added to an SRStA. The result graph is a feasible
SRStA with cost increase at most s. In (a), p2 is the crucial point; in (b), p1 is the crucial
point. Note that in (a), p3 is a terminal. Before the addition of S, its in-edge is p4p3; After
the addition of S, its in-edge becomes p2p3.

This lemma forces the feasibility of a symmetric rectilinear Steiner arbores-
cence when line segments are added to a feasible SRStA. The following lemma
describes how to make an optimal SRStA m-guillotine with little cost increase.

LEMMA 3 There exists a
(
1 + 1

m

)
-approximate feasible SRStA which is an m-

guillotine subdivision.

Proof. We start from an optimal SRStA R∗ and modify it until it is m-guillotine.
The proof is similar to that of Theorem 2, except that when we add the m-span
of each cut line, we need to apply Lemma 2 to force the feasibility of the result
subdivision. Note that the cost increase due to the addition of m-spans is charged
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off to the original edge set ER∗ , and the m-perfect or m-span cut lines are chosen
according to the original SRStA R∗. The resulting division is an SRStA whose cost
is increased by a factor of at most 1

m
. �

4.2. DYNAMIC PROGRAMMING

During the transformation of R∗, if there exists a perfect cut line, it can be used
directly. Otherwise, there always exists a favorable cut line l by Lemma 1 and its
m-span σm(l) can be chosen as new segment to be added into E∗. Furthermore,
the favorable cut line can be selected to pass through either a terminal in N or the
midpoint of some horizontal or vertical interval defined by consecutive coordinates
of points inN (according to Theorem 1). The discretization of cuts and the connec-
tedness property allow us to divide the problem into smaller subproblems and apply
dynamic programming to find an optimal m-guillotine rectilinear subdivision.

Let x1 < x2 < · · · < x2n−1 (y1 < y2 < · · · < y2n−1) denote the sorted x
(y) coordinates of points in N and the n − 1 midpoints of the intervals defined by
points in N . An instance of this subproblem is specified by the following inputs:

(a) A rectangle R(l, r, b, t) (denoted by R) determined by xl, xr , yb, yt , where
xl < xr and yb < yt .

(b) Boundary information. At most k ≤ 2m distinct points in each edge of R,
together with at most one segment which connects the middle two points if
k = 2m. These points are determined by coordinates xj , yk where 1 ≤ j, k ≤
2n − 1.

(c) Connectivity constraints. Defined as a partition, P , of the set of points on all
four sides of R. In each subset of the partition, the point with smallest x and y
coordinates is called a subroot. The SRStA containing all points in this subset
must root at this point.

The goal of the subproblem is to find a minimum length m-guillotine SRStA
with multiple components such that (i) each connected component is an SRStA
which connects to all points in some subset in P and some terminals inside R
and which is rooted at the subroot of the subset; (ii) all components contain only
horizontal and vertical lines lying inside R and connect all terminals inside R, all
boundary points and the possible boundary segment, if it exists, according to the
partition P ; (iii) collectly all connected components form multiple m-guillotine
SRStAs. The total number of subproblems is bounded by O(n4 · (n2n)4) since the
number of partitions is O(1) for fixed m.

The initial problem is specified by the bounding box with no nonterminal points
in the boundary and the connectivity constraint is empty. Note that there are at
least one terminal residing in the bounding box B and the origin o in N must be
located in the lower edge of B. The output is one connected component which is
an m-guillotine SRStA connecting all terminals inside R. The base subproblem is
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specified by (a′) a rectangle R containing no terminal inside; (b′) constant num-
ber of points (at most 8m) and constant number of segments (at most 4) in the
boundary of R; (c′) constant number of boundary connectivity constraints. Thus
it can be solved in a brute-force maner. For all other subproblems, we can find
the m-guillotine SRStA inductively, optimizing over the set of subproblems which
are defined by (a′) a cut line which divides R into two rectangles; (b′) at most
2m points, and at most one segment which connects to the two middle points if
the number of points is exactly 2m, in the cut line. (c′) O(1) choices of boundary
connectivity constraints for the two new rectangles. Note that the partition must
respect to the original partition in (c).

Each subproblem takes time O(n2m+1) since there are O(n) choices of a cut
line in (a’) and O(n2m) choices of points in the cut line. As mentioned previously,
the number of subproblems is bounded by O(n8m+4). Thus the total running time
for dynamic programming is O(n10m+5).

5. Conclusion and Open Problems

The NP-completeness proof for RStA is rather delicate and it is quite open whether
SRStA is NP-complete or not. Of larger practical importance is the question of
what approximation ratios can be obtained for the SRStA problem in better than
O(n2) time.
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